
2026/02/13 02:59 1/8 M16 MIDI Interface

MIDIbox - http://midibox.org/dokuwiki/

M16 MIDI Interface

Add 16 MIDI I/O to your Core, SPI Slave Interface with up to 16 UARTs(MIDI I/O), based on
low-cost FPGA…

Features

The FPGA internal clock works @88.67MHz.
Fast 4 wires SPI in slave mode to control the board, 10Mb/s, 5V tolerant.
Uses the default MIOS32_SPI_MIDI protocol, MIOS32 is ready-to-use with it.
16 UARTs on board, it's 16 MIDI ports.
Each MIDI output has its own FIFO buffer of 1024 bytes, to queue the incoming MIDI from the
SPI.
Each MIDI output has its independent “Running Status”, with Disable/Enable Command from
SPI.
There's a 64 word(32bits) FIFO for out-coming messages from the board.
3 independents groups of 16 GPIOs, configurable and settable by SPI Command.
Can be stacked under a dipBoardF4

http://midibox.org/dokuwiki/doku.php?id=dipboardf4

Last update: 2018/10/06 08:37 m16 http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

http://midibox.org/dokuwiki/ Printed on 2026/02/13 02:59

PCB

2 layers PCB design.
Fits 2 layer mostly common design
rules.

min. drill 10mil
min. width 6mil

Dimension

2026/02/13 02:59 3/8 M16 MIDI Interface

MIDIbox - http://midibox.org/dokuwiki/

BOM

version 1. Mouser BOM:toDo

Qty Value Package Parts Mouser Reichelt Conrad Other Notes
Resistors

4 680R 5% 0603 R1, R2,
R3, R4

Depends
on Leds

Capacitors

3 10n 0603
C27,
C29,
C30

http://midibox.org/dokuwiki/lib/exe/detail.php?id=m16&media=antichambre:m16_interface_v1b.beta_dim.png

Last update: 2018/10/06 08:37 m16 http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

http://midibox.org/dokuwiki/ Printed on 2026/02/13 02:59

Qty Value Package Parts Mouser Reichelt Conrad Other Notes
Resistors

15 100n 0603

C23,
C24,
C28,
C31,
C32,
C33,
C34,
C35,
C36,
C37,
C38,
C39,
C40,
C41,
C42

2 10u SMC_B C25,
C26

LEDs

4 – 0805
LED.1,
LED.2,
LED.31,
LED.4

ICs

1 LCMX02-7000 TQFP144 FPGA 842-27000HC6TG144I
Speed
grade 4
to 6,
3.3V!

1 74LVC125 TSSOP-14 IC4 595-SN74LVC125APWR
1 LD1117AS33TR SOT223 REG 511-LD1117AS33
Connnector

1 micro-match
2×2 Male J1B 571-215464-4 for stack

1 2×3 Male J1A 710-61200621621

1 micro-match
2×3 Female JTAG

571-215079-6 or
571-2178710-6 (value
line)

5 2×5 Male
J11A,
J11B,
J11C,
J11D, SPI

710-61201021621

1 micro-match
2×5 Male SPI 571-8-215464-0 for stack

5 2×10 Male
GPIOA,
GPIOB,
GPIOC

710-61202021621

https://www.mouser.fr/ProductDetail/Lattice/LCMXO2-7000HC-6TG144I?qs=sGAEpiMZZMvoScKlWpK8TKmOIJyZBaKlkPc%2f7GsJudw%3d
https://www.mouser.fr/ProductDetail/Texas-Instruments/SN74LVC125APWR?qs=sGAEpiMZZMuiiWkaIwCK2SeqB8b8eM7HVlo3jiw3ikc%3d
https://www.mouser.fr/ProductDetail/STMicroelectronics/LD1117AS33TR?qs=sGAEpiMZZMsGz1a6aV8DcLVRTmaeOdDgNH1NaHTUtDw%3d
https://www.mouser.fr/ProductDetail/TE-Connectivity-AMP/215464-4?qs=sGAEpiMZZMs%252bGHln7q6pm8SOCK6aAoLgKRfGxhAt6V0%3d
https://www.mouser.fr/ProductDetail/Wurth-Electronics/61200621621?qs=sGAEpiMZZMs%252bGHln7q6pm%2fFhW%252btWvhAgbNxkR%252blwXp8Ip%2fAN9J9VOg%3d%3d
https://www.mouser.fr/ProductDetail/TE-Connectivity/215079-6?qs=sGAEpiMZZMs%252bGHln7q6pm48SVpWlpfsECZqIi2rkWjs%3d
https://www.mouser.fr/ProductDetail/TE-Connectivity/2178710-6?qs=sGAEpiMZZMs%252bGHln7q6pmzszEaJ39Bz8lDoKaCIVjpqtoiZwdtC2Ng%3d%3d
https://www.mouser.fr/ProductDetail/TE-Connectivity/2178710-6?qs=sGAEpiMZZMs%252bGHln7q6pmzszEaJ39Bz8lDoKaCIVjpqtoiZwdtC2Ng%3d%3d
https://www.mouser.fr/ProductDetail/Wurth-Electronics/61201021621?qs=sGAEpiMZZMs%252bGHln7q6pm%252bxnWLfLL2%2f93mYWvuMVZAY%3d
https://www.mouser.fr/ProductDetail/TE-Connectivity-AMP/8-215464-0?qs=sGAEpiMZZMs%252bGHln7q6pm8SOCK6aAoLgIDcXiC5FL8s%3d
https://www.mouser.fr/ProductDetail/Wurth-Electronics/61202021621?qs=sGAEpiMZZMs%252bGHln7q6pm%252bxnWLfLL2%2f9xQYuWgvWHoc%3d

2026/02/13 02:59 5/8 M16 MIDI Interface

MIDIbox - http://midibox.org/dokuwiki/

SPI Communication and protocol

This protocol is already implemented in MIOS32 as MIOS32_SPI_MIDI functions.

This is a SPI slave interface.
Host communication protocol is based on MMA Specification for USB communication.
MIDI data is carried in the packet in 32 bit MIDI Event. Most common MIDI messages are 2 or 3 bytes
packed into one MIDI Event.
Longer messages, generally System Exclusive messages are carried in multiple MIDI Events. These
MIDI Event provide a method to transfer MIDI messages with 32 bit fixed length messages to help
memory allocation. This also makes parsing MIDI events easier by packetizing the separate bytes of a
MIDI message into one parsed MIDI Event.
The first byte in each 32-bit MIDI Event is a sub-header containing a Port Index Number (4 bits)
followed by a Code Index Number (4 bits). The remaining three bytes contain the actual MIDI event.
Most typical parsed MIDI events are two or three bytes in length. Unused bytes are reserved and must
be padded with zeros (in the case of a one- or two-byte MIDI event) to preserve the 32-bit fixed length
of the MIDI Event.

The Code Index Number (CIN) indicates the classification of the bytes in the and the number of bytes
in the message. The following table summarizes these classifications.

//! this global array is read from MIOS32_MIDI to
//! determine the number of MIDI bytes which are part of a package
const u8 mios32_midi_pcktype_num_bytes[16] = {
 0, // 0: invalid/reserved event
 0, // 1: local command
 2, // 2: two-byte system common messages like MTC, Song Select, etc.
 3, // 3: three-byte system common messages like SPP, etc.
 3, // 4: SysEx starts or continues
 1, // 5: Single-byte system common message or sysex sends with following
single byte
 2, // 6: SysEx sends with following two bytes
 3, // 7: SysEx sends with following three bytes
 3, // 8: Note Off
 3, // 9: Note On
 3, // a: Poly-Key Press
 3, // b: Control Change
 2, // c: Program Change
 2, // d: Channel Pressure
 3, // e: PitchBend Change
 1 // f: single byte

};

MIDI messages

Running status is never used, so all the messages are formed of all bytes. But the interface supports

Last update: 2018/10/06 08:37 m16 http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

http://midibox.org/dokuwiki/ Printed on 2026/02/13 02:59

it, each MIDI Out can be individually set for that purpose.

Some examples

MIDI clock on port 7(SPIM0 to SPIM15)
MIDI message is 0xF8, cin = 0x5.
SPI message = 0x0000f875 (Less significant byte first)

 mios32_midi_package_t package;
 package.ALL = 0;
 package.cin = 0x5; // Single-byte system common message
 package.evnt0 = 0xf8; // MIDI Clock event status
 MIOS32_MIDI_SendPackage(SPIM7, package);
 // or directly
 MIOS32_MIDI_SendClock(SPIM7);

Note On on port 11
MIDI message is 0x90 0x2A 0x40, cin = 0x9.
SPI message = 0x402A90b9

 mios32_midi_package_t package;
 package.ALL = 0;
 package.cin = 0x9; // Single-byte system common message
 package.evnt0 = 0x90; // MIDI Note On event, channel 1
 package.evnt1 = 0x2A; // Note Number
 package.evnt2 = 0x40; // Velocity
 MIOS32_MIDI_SendPackage(SPIM11, package);
 // or directly
 MIOS32_MIDI_SendNoteOn(SPIM11, Chn1, 0x2A, 0x40)

System Exclusive on port 0
MIDI message is 0xF0 0x01 0x02 0x03 0x04 0x05 0xF7.
The stream will be divided in 3 packages:
SPI messages = 0x0101f004(SYSEX start), 0x05040304(SYSEX continues), 0x0000f705(SYSEX ends
with one byte)

 mios32_midi_package_t package;
 package.ALL = 0;
 package.cin = 0x4; // Single-byte system common message
 package.evnt0 = 0xf0; // Start of Exclusive
 package.evnt1 = 0x01; // Data
 package.evnt2 = 0x02; // Data
 MIOS32_MIDI_SendPackage(SPIM0, package);
 package.evnt0 = 0x03; // Data
 package.evnt1 = 0x04; // Data
 package.evnt2 = 0x05; // Data
 MIOS32_MIDI_SendPackage(SPIM0, package);

2026/02/13 02:59 7/8 M16 MIDI Interface

MIDIbox - http://midibox.org/dokuwiki/

 package.ALL = 0;
 package.cin = 0x4; // Single-byte system common message
 package.evnt0 = 0xf7; // End of Exclusive
 MIOS32_MIDI_SendPackage(SPIM0, package);
 // or directly
 u8 stream[7]={0xF0, 0x01, 0x02, 0x03, 0x04, 0x05, 0xF7};
 MIOS32_MIDI_SendSysex(SPIM0, (u8*)stream, 7);

Special command messages

The m16 can receive some specifics commands and send back some status messages.
when CIN=0x1(local command), the m16 will parse the message as a command and apply the
requested change.

Port(Cable)value becomes Group Command Code(GCC).
evnt0 is the command number(CMD.
evnt1 and evnt2 are the value bytes.

List of the commands:

http://midibox.org/dokuwiki/lib/exe/detail.php?id=m16&media=antichambre:cmd_table.png

Last update: 2018/10/06 08:37 m16 http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

http://midibox.org/dokuwiki/ Printed on 2026/02/13 02:59

With System commands, you will be able to

Put SPI or UARTs in loopback for testing purpose.
Enable MIDI activity status messages over SPI(MISO).

There's only one MIDI configuration command, dedicated to UARTs TX(MIDI Out) Running Status
enabler.

With GPIOx commands, you can configure and set the GPIO ports.

toDo
Some connection examples\\

In MIOS32

datasheet

From:
http://midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

Last update: 2018/10/06 08:37

http://midibox.org/dokuwiki/
http://midibox.org/dokuwiki/doku.php?id=m16&rev=1538815024

	M16 MIDI Interface
	Features
	PCB
	Dimension
	BOM
	SPI Communication and protocol
	MIDI messages
	Some examples
	Special command messages

