Jump to content

Search the Community

Showing results for tags 'power supply'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Top
    • Latest News
    • Bulk Orders
  • Construction
    • MIDIbox NG
    • MIDIbox HUIs
    • MIDIbox SEQ
    • MIDIbox SID
    • MIDIbox FM
    • MIDIbox BLM
    • MIDIbox User Projects
    • MIDIfication
    • Design Concepts
    • Parts Questions
    • Testing/Troubleshooting
    • Tips & Tricks
    • MIDIbox Documentation Project
  • Software
    • MIDIbox Tools & MIOS Studio
    • MIOS programming (C)
    • MIOS programming (Assembler)
    • MIOS toy of the week
  • Miscellaneous
    • Fleamarket
    • Sale Requests
    • Miscellaneous
    • Songs & Sounds
  • Archive
    • Parts Archive
    • MIDIbox of the Week
  • Multilingual
    • Nordisk
    • Nederlands
    • Deutsch
    • Français
    • Italiano
    • Español
    • Português
    • Greek
    • Russian
    • Others

Blogs

  • Twin-X's Blog
  • j00lz - MB-6582 Build Log
  • Project "Desire MC1"
  • MIDIbox Live
  • protofuse's Blog
  • Joeri's Blog
  • Phil's MBSEQv4
  • taximan's home base
  • Kyo's Blog
  • Snoozr's Notes on Building an MB-6582
  • Amplification
  • dawidbass' Blog
  • SLP's Blog
  • MidiSax's Blog
  • blog_latenights
  • Non usare un modulo Lcd
  • Duggle's Blog
  • Rics' 4Decks
  • aaa135139's Blog
  • bilderbuchi's Blog
  • Alain6870's Blog
  • MidiMaigre 37
  • Digineural's Blog
  • Sylwester's Blog
  • olga42's Blog
  • MB9090 Blog
  • Zossen's Blog
  • stilz&Rumpel's Blog
  • Antichambre's Blog
  • MB TWINsid Blog
  • massenvernichtungswaffe.de
  • gslug's Blog
  • albpower2seq4sid's Blog
  • TB's MIDIBox Adventures
  • kHz-tone's Blog
  • Blatboy's Blog
  • geth's-building-stuff-Blog
  • Excursions in DIY land
  • Ralex's Blog
  • huanyupcb's Blog
  • Vicentiu Mincior's Blog
  • A journey through midibox LC construction
  • TheAncientOne's Blog
  • nebula's Blog
  • Sasha's Blog
  • Tales from the kit mill
  • novski's
  • nicolas' Blog
  • Gelpearl
  • Johan's Blog
  • midibox.org Blog
  • Wisefire build logs
  • ColleenMorris' Blog
  • brucefu's Blog
  • atribunella's Blog
  • Building my Seq
  • A Seqv4 kind of thing
  • ModulBox
  • ArumBlack
  • mongrol
  • Watch!!- Mission: Impossible – Fallout (HD) Movie Online.Full 4k
  • Watch!!- Hotel Transylvania 3 Summer Vacation (HD) Movie Online.Full 4k
  • Silver eagles sign football gamer Adam Zaruba since restricted stop
  • Watch!!- The Meg (HD) Movie Online.Full 4k
  • Steelkiwi Blog
  • Words1234
  • SSP
  • How to Solve the Excavator Hydraulic System Running Slowly
  • Eight Ways to Maintain Excavator Parts
  • Five Common Problems and Fault Analysis of Komatsu Excavator
  • Ficher Chem Co. Ltd: Buy Research Chemicals Online
  • Zazenergyli
  • Top Mobile App Development Company in USA
  • belkin range extender
  • wrong post

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests

Found 7 results

  1. Hello everyone, Have been in the process of building my midibox SID for years now, but never seem to be able to get around it. Always concerned that once its built, it could be better. So I've been looking and gathering information about the best projects for midibox SID Models, different SID configurations, different front panel options, and most important, different power supplys. Currently trying to figure out the best way to supply my SID circuit, and this seems to be the best 2 options ou there: C64 transformer suplying a 9V linear regulator and a 5 Volt line directly from transformer to the SID Vcc pin Using a 12V-15V power supply to supply both a 9V linear regulator, and a 5V buck converter in parallel. Both of this options leave me a bit weary. Connecting the SID Vcc directly to the transformer would probably prevent me from having a good night sleep ever again, but also I'm not sure how this buck converter works out when bad stuff happens. I imagine that if the unlikely event of the Mosfet on the buck converter would blow up, it could act as a short circuit and expose the Vcc rail to whatever input voltage is receiving(Please correct me if I'm wrong). I've seen lots of Posts in the forum regarding this topic, and was wondering if I could get an engineer's input on the following circuit(no pun intended). A Google search for 'discrete over voltage protection circuit' will reveal this link as one of its first results: https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/760.html The article from Maxim describes how the circuit works in great detail, but here's an overview: This simple protection circuit is composed by: - 3 resistors - 2 PNP transitors - 1 Diode - 1 Zener The circuit provides a power supply line with adjustable over-voltage protection, meaning that once the voltage at the input exceeds a certain level, the circuit will shut down its output power. The maximum current can also be programmed to certain extent by carefully selecting the transistors bias resistors. A simple reversed bias diode is used as a weak moderate protection against power line reverse voltages. I've simulated the circuit and carefully selected the components so that they meet the 8580 Chip Power limits specifications. I actually took this info from the 6581 datasheet, so not really sure if the same values apply, but good enough to use as a case study. 6581 Vdd pin = 9V 25-40 mA 6581 Vcc pin = 5V 70-100 mA I'm using 2 separate circuits in my simulation, one as a protection for the SID Vdd pin, the other for the Vcc pin. Here is the outcome of the following tests: Test 1: Ideal conditions - sim001_stable.jpg I feed the expected voltages(in range) into the circuits, using some moderate loads (around 200 ohm) to pull some current and everything works as expected. The pass transistor Q2 passes the amount of current required by the 200 ohm load, but also imposes a small voltage drop on the line so this should be taken into consideration. Test 2: Over current protection in action - sim002_heavy_load.jpg I started to simulate faulty conditions. First I decreased the resistance of the loads progressively until I reached their smallest possible value (around 1 ohm), so that maximum current is pulled from the pass transistors Q2. After the load resistances goes lower then a certain value, the current through the pass transistor Q2 is kept the same, and does not go higher as it is limited by resistors R2, R3 and transitor Q1 which controls the current flow in Q2. Test 3: Extreme limits near tip off - sim003_heavy_load_over_volt.jpg I started raising both Voltages at the circuit inputs until near their tip off points.The load resistance level was kept the same, so that maximum current flow is expected. In this scenario we can see the maximum current that the circuit will allow to pass, just before its tip off point. For Vcc, when there's a slight over voltage condition, the maximum allowed current will be around 20 mA more then its rated max limit of 100mA. For Vdd, when there's a slight over voltage condition, the maximum allowed current will be arounf 10 mA more then its rated max limit of 40mA. This upper limits are carefully set as to provide some wiggle room for the IC current requirements. Test 4: Over voltage protection in Action - sim004_over_volt_shutdown.jpg I continued to raise the input voltages above their tip off points (6.2V for Vcc and 11V for Vdd). Once the input voltage exceeds the tip off voltage, the circuit cuts off the pass transistors shutting down the power lines to the IC pins. The transistor is kept off until the input voltage level is set lower then its tip off point. Although I seem confident about this circuit's performance, I'm not an engineer, so it would be really great if someone with more expertize could give me their input on how great(or great disaster) would this circuits be as a power protection for the SID power pins. Not so sure this circuit would provide a nice output impedance for the SID chip to work as naturally as possible, without any restraints. What do you guys think? Also, does anyone out there knows the Absolute Maximum Ratings for the 8580 chip? Kind regards, analog_mo
  2. This is the power supply in DE:GENERATOR Link german blog: http://www.cczwei-forum.de/cc2/thread.php?threadid=5878 Link english blog: http://mutable-instruments.net/forum/discussion/2504/shruthi-synthesizer-and-my-wave-1#Item_966
  3. Hello all, I am building my MB6582 and I would like to use a single regulated 12VDC wall adapter. I already read different posts related to the MB6582 power supply options, but I am still in doubt... Question: can I directly use the 12VDC rail for the SIDs (6582) and a switching regulator to derive the +5V rail? I mean: any problem in terms of noise in referring both the rails to the same GND instead of superimposing the 9V to the 5V one? Thank you! Walter
  4. Hi, I power the Seq v4 with USB , Fine , stable (since a month) i want to permute for a permanent dedicated PSU than USB in the seq case (BLM extension ready) so i've bought a meanwell 5V 3A at reichelt . Meanwell PSU this switching PSU made the Control Surface crash! ( i suspect interaction between supply switching frequency and the frequency of the CS matrix also ripple/noise) i could build filters to sleek the PSU but the config is a bit special. (filter have to be well designed for a certain current, BLM is not constent current, and if the CS crash the BLM will do too! don't like this sensible way) so i thinking use classic design PSU with transformer and a linear LT1085-5 regulator (not done yet) i never used this regulator but i will test. Is someone have experience , suggestion or tips with higher current than 7805 regulator. (perhaps another regulator familly than LT1085) Thanks Nico
  5. Hey everyone! I have been working on my SID synthesizer for the past couple months. I have the Core and SID modules (that I got from SmashTV) assembled, and my parts for the minimal control surface finally came in the mail. I have attached images of the 2x20 LCD that I will be using. The problem I am having is that I do not know where to go to find documentation on how to wire this display up so that it will function with the rest of my modules. I bought it assuming that these universal displays have some sort of standardization. Given that you guys have set up an LCD display before what would you suggest? Now for the power supply. I am going to find an old C64 power supply for sale (the commodores I ordered did not come with them) and follow this schematic: http://ucapps.de/mbhp/mbhp_sid_c64_psu.pdf The ground, J2, and J3 go to an audio Jack but I don't plan on using one. I want to use the midi out to connect to my computer where I hope to control my synthesizer in Propellerhead Reason 7. Before I deviate from the documentation I wanted to ask your opinion on this change to the design. Thanks in advance!
  6. Today I completed my base PCB for the MB 6582. I only have 8505 chips so I went with PSU option A. I tested the board voltages for the first time this afternoon and got proper readings for all the 5v pins on the SIDs, COREs, etc, but when I've tried testing for 9v (on J4 for example or J25) I don't get 9v. On J4 I just read 0v and on J25 I'll sometimes read around 5v (which drops down to 0 eventually). I don't have any chips placed in their sockets yet, but wanted to figure out why I'm not seeing 9v before placing them. Thanks!
  7. This the power supply for my AVR-Synth "WAVE 1". Link: Link: http://www.cczwei-forum.de/cc2/thread.php?postid=81115#post81115
×
×
  • Create New...