GNU gprof

The GNU Profiler

(GNU Tools for ARM Embedded Processors)
Version 2.22.0

Jay Fenlason and Richard Stallman

This manual describes the GNU profiler, gprof, and how you can use it to
determine which parts of a program are taking most of the execution time.
We assume that you know how to write, compile, and execute programs.
GNU gprof was written by Jay Fenlason. Eric S. Raymond made some
minor corrections and additions in 2003.

Copyright (© 1988, 1992, 1997, 1998, 1999, 2000, 2003, 2008, 2009 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Introduction to Profiling....................... 1
2 Compiling a Program for Profiling............ 3
3 Executing the Program 5
4 gprof Command Summary..................... 7
4.1 Output OptionsSt 7
4.2 Analysis Options. 10
4.3 Miscellaneous Options.ouiiiiiiiiiiiiennnn. 12
4.4 Deprecated Optionsoouuiiemiit e 13
A5 SYIISPEOCS . ot ottt ettt e 14

5 Interpreting gprof’s Output 15
5.1 The Flat Profile...... 15
5.2 The Call Graph...... ..o 17
5.2.1 The Primary Line ..., 18

5.2.2 Lines for a Function’s Callers............................. 19

5.2.3 Lines for a Function’s Subroutines........................ 19

5.2.4 How Mutually Recursive Functions Are Described 20

5.3 Line-by-line Profiling........... i 22
5.4 The Annotated Source Listing............. ... 24

6 Inaccuracy of gprof Output................... 27
6.1 Statistical Sampling Error............. i 27
6.2 Estimating children Times............. ..., 28

7 Answers to Common Questions.............. 29
8 Incompatibilities with Unix gprof............ 31
9 Detalils of Profiling 33
9.1 Implementation of Profiling 33
9.2 Profiling Data File Formato .o oL 34
9.2.1 Histogram Records.......... ... o i, 35
9.2.2 Call-Graph Recordso i 35
9.2.3 Basic-Block Execution Count Records 36

9.3 gprof’s Internal Operation........... oL, 36

9.4 Debugging gprof 39

ii GNU gprof

Appendix A GNU Free Documentation License
.. 41

Chapter 1: Introduction to Profiling 1

1 Introduction to Profiling

Profiling allows you to learn where your program spent its time and which
functions called which other functions while it was executing. This infor-
mation can show you which pieces of your program are slower than you
expected, and might be candidates for rewriting to make your program exe-
cute faster. It can also tell you which functions are being called more or less
often than you expected. This may help you spot bugs that had otherwise
been unnoticed.

Since the profiler uses information collected during the actual execution of
your program, it can be used on programs that are too large or too complex
to analyze by reading the source. However, how your program is run will
affect the information that shows up in the profile data. If you don’t use
some feature of your program while it is being profiled, no profile information
will be generated for that feature.

Profiling has several steps:

e You must compile and link your program with profiling enabled. See
Chapter 2 [Compiling a Program for Profiling], page 3.

e You must execute your program to generate a profile data file. See
Chapter 3 [Executing the Program]|, page 5.

e You must run gprof to analyze the profile data. See Chapter 4 [gprof
Command Summary|, page 7.

The next three chapters explain these steps in greater detail.
Several forms of output are available from the analysis.

The flat profile shows how much time your program spent in each func-
tion, and how many times that function was called. If you simply want to
know which functions burn most of the cycles, it is stated concisely here.
See Section 5.1 [The Flat Profile], page 15.

The call graph shows, for each function, which functions called it, which
other functions it called, and how many times. There is also an estimate
of how much time was spent in the subroutines of each function. This can
suggest places where you might try to eliminate function calls that use a lot
of time. See Section 5.2 [The Call Graph]|, page 17.

The annotated source listing is a copy of the program’s source code,
labeled with the number of times each line of the program was executed.
See Section 5.4 [The Annotated Source Listing], page 24.

To better understand how profiling works, you may wish to read a de-
scription of its implementation. See Section 9.1 [Implementation of Profil-
ing], page 33.

Chapter 2: Compiling a Program for Profiling 3

2 Compiling a Program for Profiling

The first step in generating profile information for your program is to compile
and link it with profiling enabled.

To compile a source file for profiling, specify the ‘-pg’ option when you
run the compiler. (This is in addition to the options you normally use.)

To link the program for profiling, if you use a compiler such as cc to do
the linking, simply specify ‘-pg’ in addition to your usual options. The same
option, ‘-pg’, alters either compilation or linking to do what is necessary for
profiling. Here are examples:

cc —-g -c myprog.c utils.c -pg
cc —o myprog myprog.o utils.o -pg

The ‘-pg’ option also works with a command that both compiles and

links:
cc —-o myprog myprog.c utils.c -g -pg
Note: The ‘-pg’ option must be part of your compilation options as well

as your link options. If it is not then no call-graph data will be gathered
and when you run gprof you will get an error message like this:

gprof: gmon.out file is missing call-graph data

If you add the ‘-Q’ switch to suppress the printing of the call graph data
you will still be able to see the time samples:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
44 .12 0.07 0.07 zazLoop
35.29 0.14 0.06 main
20.59 0.17 0.04 bazMillion

If you run the linker 1d directly instead of through a compiler such as cc,
you may have to specify a profiling startup file ‘gcrt0. o0’ as the first input file
instead of the usual startup file ‘crt0.0’. In addition, you would probably
want to specify the profiling C library, ‘1ibc_p.a’, by writing ‘-1c_p’ instead
of the usual ‘-1c¢’. This is not absolutely necessary, but doing this gives you
number-of-calls information for standard library functions such as read and
open. For example:

1d -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p

If you are running the program on a system which supports shared li-
braries you may run into problems with the profiling support code in a shared
library being called before that library has been fully initialised. This is usu-
ally detected by the program encountering a segmentation fault as soon as
it is run. The solution is to link against a static version of the library con-
taining the profiling support code, which for gcc users can be done via the
‘-static’ or ‘-static-libgcc’ command line option. For example:

4 GNU gprof

gcc —-g -pg -static-libgcc myprog.c utils.c -o myprog

If you compile only some of the modules of the program with ‘-pg’, you
can still profile the program, but you won’t get complete information about
the modules that were compiled without ‘-pg’. The only information you
get for the functions in those modules is the total time spent in them; there
is no record of how many times they were called, or from where. This will
not affect the flat profile (except that the calls field for the functions will
be blank), but will greatly reduce the usefulness of the call graph.

If you wish to perform line-by-line profiling you should use the gcov tool
instead of gprof. See that tool’s manual or info pages for more details of
how to do this.

Note, older versions of gcc produce line-by-line profiling information that
works with gprof rather than gcov so there is still support for displaying
this kind of information in gprof. See Section 5.3 [Line-by-line Profiling],
page 22.

It also worth noting that gcc implements a ‘~finstrument-functions’
command line option which will insert calls to special user supplied instru-
mentation routines at the entry and exit of every function in their program.
This can be used to implement an alternative profiling scheme.

Chapter 3: Executing the Program 5)

3 Executing the Program

Once the program is compiled for profiling, you must run it in order to gen-
erate the information that gprof needs. Simply run the program as usual,
using the normal arguments, file names, etc. The program should run nor-
mally, producing the same output as usual. It will, however, run somewhat
slower than normal because of the time spent collecting and writing the
profile data.

The way you run the program—the arguments and input that you give
it—may have a dramatic effect on what the profile information shows. The
profile data will describe the parts of the program that were activated for the
particular input you use. For example, if the first command you give to your
program is to quit, the profile data will show the time used in initialization
and in cleanup, but not much else.

Your program will write the profile data into a file called ‘gmon.out’ just
before exiting. If there is already a file called ‘gmon.out’, its contents are
overwritten. There is currently no way to tell the program to write the
profile data under a different name, but you can rename the file afterwards
if you are concerned that it may be overwritten.

In order to write the ‘gmon.out’ file properly, your program must exit
normally: by returning from main or by calling exit. Calling the low-level
function _exit does not write the profile data, and neither does abnormal
termination due to an unhandled signal.

The ‘gmon.out’ file is written in the program’s current working directory
at the time it exits. This means that if your program calls chdir, the
‘gmon.out’ file will be left in the last directory your program chdir’d to. If
you don’t have permission to write in this directory, the file is not written,
and you will get an error message.

Older versions of the GNU profiling library may also write a file called
‘bb.out’. This file, if present, contains an human-readable listing of the
basic-block execution counts. Unfortunately, the appearance of a human-
readable ‘bb.out’ means the basic-block counts didn’t get written into
‘gmon.out’. The Perl script bbconv.pl, included with the gprof source
distribution, will convert a ‘bb.out’ file into a format readable by gprof.
Invoke it like this:

bbconv.pl < bb.out > bh-data

This translates the information in ‘bb.out’ into a form that gprof can
understand. But you still need to tell gprof about the existence of this
translated information. To do that, include bb-data on the gprof command
line, along with ‘gmon.out’, like this:
gprof options executable-file gmon.out bb-data [yet-more-profile-data-files...] [> out
filel

Chapter 4: gprof Command Summary 7
4 gprof Command Summary

After you have a profile data file ‘gmon.out’, you can run gprof to interpret
the information in it. The gprof program prints a flat profile and a call graph
on standard output. Typically you would redirect the output of gprof into
a file with >’
You run gprof like this:
gprof options [executable-file [profile-data-files...]] [> outfile]

Here square-brackets indicate optional arguments.

If you omit the executable file name, the file ‘a.out’ is used. If you give
no profile data file name, the file ‘gmon.out’ is used. If any file is not in the
proper format, or if the profile data file does not appear to belong to the
executable file, an error message is printed.

You can give more than one profile data file by entering all their names
after the executable file name; then the statistics in all the data files are
summed together.

The order of these options does not matter.

4.1 Output Options

These options specify which of several output formats gprof should produce.

Many of these options take an optional symspec to specify functions to
be included or excluded. These options can be specified multiple times, with
different symspecs, to include or exclude sets of symbols. See Section 4.5
[Symspecs], page 14.

Specifying any of these options overrides the default (‘-p -q’), which
prints a flat profile and call graph analysis for all functions.

-A[symspec]

--annotated-source [=symspec]
The ‘-A’ option causes gprof to print annotated source code.
If symspec is specified, print output only for matching symbols.
See Section 5.4 [The Annotated Source Listing], page 24.

—--brief Ifthe ‘-b’ option is given, gprof doesn’t print the verbose blurbs
that try to explain the meaning of all of the fields in the tables.
This is useful if you intend to print out the output, or are tired
of seeing the blurbs.

-C[symspec]

--exec-counts [=symspec]
The ‘-C’ option causes gprof to print a tally of functions and
the number of times each was called. If symspec is specified,
print tally only for matching symbols.

8 GNU gprof

If the profile data file contains basic-block count records, spec-
ifying the ‘-1’ option, along with ‘-C’, will cause basic-block
execution counts to be tallied and displayed.

-i

--file-info
The ‘-1’ option causes gprof to display summary information
about the profile data file(s) and then exit. The number of
histogram, call graph, and basic-block count records is displayed.

-1 dirs

—--directory-path=dirs
The ‘-I’ option specifies a list of search directories in which to
find source files. Environment variable GPROF_PATH can also
be used to convey this information. Used mostly for annotated
source output.

-J [symspec]

--no-annotated-source [=symspec]
The ‘=J’ option causes gprof not to print annotated source code.
If symspec is specified, gprof prints annotated source, but ex-
cludes matching symbols.

-L

--print-path
Normally, source filenames are printed with the path component
suppressed. The ‘~L’ option causes gprof to print the full path-
name of source filenames, which is determined from symbolic
debugging information in the image file and is relative to the
directory in which the compiler was invoked.

-p [symspec]

—--flat-profile[=symspec]
The ‘-p’ option causes gprof to print a flat profile. If symspec
is specified, print flat profile only for matching symbols. See
Section 5.1 [The Flat Profile|, page 15.

-P[symspec]

--no-flat-profile[=symspec]
The ‘=P’ option causes gprof to suppress printing a flat profile.
If symspec is specified, gprof prints a flat profile, but excludes
matching symbols.

-q[symspec]

—-—graph [=symspec]
The ‘-q’ option causes gprof to print the call graph analysis. If
symspec is specified, print call graph only for matching symbols
and their children. See Section 5.2 [The Call Graph], page 17.

Chapter 4: gprof Command Summary 9

-Q[symspec]

--no-graph [=symspec]
The ‘-Q’ option causes gprof to suppress printing the call graph.
If symspec is specified, gprof prints a call graph, but excludes
matching symbols.

-t

-—table-length=num
The ‘=t’ option causes the num most active source lines in each
source file to be listed when source annotation is enabled. The
default is 10.

-y

--separate-files
This option affects annotated source output only. Normally,
gprof prints annotated source files to standard-output. If
this option is specified, annotated source for a file named
‘path/filename’ is generated in the file ‘filename-ann’. If the
underlying file system would truncate ‘filename-ann’ so that it
overwrites the original ‘filename’, gprof generates annotated
source in the file ‘filename.ann’ instead (if the original file name
has an extension, that extension is replaced with ‘.ann’).

-Z[symspec]

--no-exec-counts [=symspec]
The ‘-Z’ option causes gprof not to print a tally of functions
and the number of times each was called. If symspec is specified,
print tally, but exclude matching symbols.

-r

--function-ordering
The ‘--function-ordering’ option causes gprof to print a sug-
gested function ordering for the program based on profiling data.
This option suggests an ordering which may improve paging, tlb
and cache behavior for the program on systems which support
arbitrary ordering of functions in an executable.

The exact details of how to force the linker to place functions in
a particular order is system dependent and out of the scope of
this manual.

-R map_file

--file-ordering map_file
The ‘--file-ordering’ option causes gprof to print a sug-
gested .o link line ordering for the program based on profiling
data. This option suggests an ordering which may improve pag-
ing, tlb and cache behavior for the program on systems which
do not support arbitrary ordering of functions in an executable.

Use of the ‘-a’ argument is highly recommended with this op-
tion.

10 GNU gprof

The map_file argument is a pathname to a file which provides
function name to object file mappings. The format of the file is
similar to the output of the program nm.

c-parse.o0:00000000 T yyparse

c-parse.o0:00000004 C yyerrflag

c-lang.o0:00000000 T maybe_objc_method_name

c-lang.o0:00000000 T print_lang_statistics

c-lang.o0:00000000 T recognize_objc_keyword

c-decl.o0:00000000 T print_lang_identifier

c-decl.o0:00000000 T print_lang_type

To create a map_file with GNU nm, type a command like
nm --extern-only --defined-only -v ——print-file—-name
program-name.

-T

-—traditional
The ‘-T’ option causes gprof to print its output in “traditional”
BSD style.

-w width

-—-width=width
Sets width of output lines to width. Currently only used when
printing the function index at the bottom of the call graph.

-X
-—all-lines
This option affects annotated source output only. By default,
only the lines at the beginning of a basic-block are annotated. If
this option is specified, every line in a basic-block is annotated
by repeating the annotation for the first line. This behavior is
similar to tcov’s ‘-a’.

--demangle [=style]

--no-demangle
These options control whether C++ symbol names should be
demangled when printing output. The default is to demangle
symbols. The --no-demangle option may be used to turn off
demangling. Different compilers have different mangling styles.
The optional demangling style argument can be used to choose
an appropriate demangling style for your compiler.

4.2 Analysis Options

-a
--no-static
The ‘-a’ option causes gprof to suppress the printing of stat-
ically declared (private) functions. (These are functions whose

Chapter 4: gprof Command Summary 11

-C

names are not listed as global, and which are not visible outside
the file/function/block where they were defined.) Time spent in
these functions, calls to/from them, etc., will all be attributed to
the function that was loaded directly before it in the executable
file. This option affects both the flat profile and the call graph.

--static-call-graph

-D

The ‘-c’ option causes the call graph of the program to be aug-
mented by a heuristic which examines the text space of the ob-
ject file and identifies function calls in the binary machine code.
Since normal call graph records are only generated when func-
tions are entered, this option identifies children that could have
been called, but never were. Calls to functions that were not
compiled with profiling enabled are also identified, but only if
symbol table entries are present for them. Calls to dynamic li-
brary routines are typically not found by this option. Parents
or children identified via this heuristic are indicated in the call
graph with call counts of ‘0’.

—--ignore-non-functions

-k from/to

—--line

The ‘-D’ option causes gprof to ignore symbols which are not
known to be functions. This option will give more accurate
profile data on systems where it is supported (Solaris and HPUX
for example).

The -k’ option allows you to delete from the call graph any
arcs from symbols matching symspec from to those matching
symspec to.

The ‘-1’ option enables line-by-line profiling, which causes his-
togram hits to be charged to individual source code lines, instead
of functions. This feature only works with programs compiled
by older versions of the gcc compiler. Newer versions of gcc are
designed to work with the gcov tool instead.

If the program was compiled with basic-block counting enabled,
this option will also identify how many times each line of code
was executed. While line-by-line profiling can help isolate where
in a large function a program is spending its time, it also sig-
nificantly increases the running time of gprof, and magnifies
statistical inaccuracies. See Section 6.1 [Statistical Sampling
Error], page 27.

12 GNU gprof

—In num

--min-count=num
This option affects execution count output only. Symbols that
are executed less than num times are suppressed.

-nsymspec
--time=symspec
The ‘-n’ option causes gprof, in its call graph analysis, to only
propagate times for symbols matching symspec.

-Nsymspec

--no-time=symspec
The ‘-n’ option causes gprof, in its call graph analysis, not to
propagate times for symbols matching symspec.

-Sfilename

--external-symbol-table=filename
The ‘-S’ option causes gprof to read an external symbol table
file, such as ‘/proc/kallsyms’, rather than read the symbol ta-
ble from the given object file (the default is a.out). This is
useful for profiling kernel modules.

-z
--display-unused-functions
If you give the ‘-z’ option, gprof will mention all functions in
the flat profile, even those that were never called, and that had
no time spent in them. This is useful in conjunction with the
‘~c¢’ option for discovering which routines were never called.

4.3 Miscellaneous Options

-d [num]

—-—debug [=num]
The ‘-d num’ option specifies debugging options. If num is not
specified, enable all debugging. See Section 9.4 [Debugging
gprof|, page 39.

-h
--help The ‘-h’ option prints command line usage.

-Oname

--file-format=name
Selects the format of the profile data files. Recognized formats
are ‘auto’ (the default), ‘bsd’, ‘4.4bsd’, ‘magic’, and ‘prof’ (not
yet supported).

—--sum The ‘-s’ option causes gprof to summarize the information in
the profile data files it read in, and write out a profile data file
called ‘gmon.sum’, which contains all the information from the

Chapter 4: gprof Command Summary 13

profile data files that gprof read in. The file ‘gmon.sum’ may be
one of the specified input files; the effect of this is to merge the
data in the other input files into ‘gmon.sum’.

Eventually you can run gprof again without ‘-s’ to analyze the
cumulative data in the file ‘gmon. sum’.

-V

--version
The ‘-v’ flag causes gprof to print the current version number,
and then exit.

4.4 Deprecated Options

These options have been replaced with newer versions that use symspecs.

—-e function_name
The ‘-e function’ option tells gprof to not print information
about the function function_name (and its children. ..) in the
call graph. The function will still be listed as a child of any
functions that call it, but its index number will be shown as
‘[not printed]’. More than one ‘-e’ option may be given; only
one function_name may be indicated with each ‘-e’ option.

-E function_name
The -E function option works like the -e option, but time
spent in the function (and children who were not called from
anywhere else), will not be used to compute the percentages-of-
time for the call graph. More than one ‘-E’ option may be given;
only one function_name may be indicated with each ‘~E’ option.

-f function_name
The ‘-f function’ option causes gprof to limit the call graph
to the function function_name and its children (and their
children. . .). More than one ‘-f’ option may be given; only
one function_name may be indicated with each ‘-f’ option.

-F function_name
The ‘-F function’ option works like the -f option, but
only time spent in the function and its children (and their
children...) will be used to determine total-time and
percentages-of-time for the call graph. More than one ‘-F’
option may be given; only one function_name may be indicated
with each ‘=F’ option. The ‘~F’ option overrides the ‘-E’ option.

Note that only one function can be specified with each -e, -E, -f or
-F option. To specify more than one function, use multiple options. For
example, this command:

gprof -e boring -f foo -f bar myprogram > gprof.output
lists in the call graph all functions that were reached from either foo or bar
and were not reachable from boring.

14

GNU gprof

4.5 Symspecs

Many of the output options allow functions to be included or excluded using
symspecs (symbol specifications), which observe the following syntax:

filename_containing_a_dot
| funcname_not_containing a_dot
| linenumber
| ([any_filename] ‘:’ (any_funcname | linenumber))

Here are some sample symspecs:

‘main.c’

‘main’

Selects everything in file ‘main.c’—the dot in the string tells
gprof to interpret the string as a filename, rather than as a
function name. To select a file whose name does not contain a
dot, a trailing colon should be specified. For example, ‘odd:’ is
interpreted as the file named ‘odd’.

Selects all functions named ‘main’.

Note that there may be multiple instances of the same function
name because some of the definitions may be local (i.e., static).
Unless a function name is unique in a program, you must use
the colon notation explained below to specify a function from a
specific source file.

Sometimes, function names contain dots. In such cases, it is
necessary to add a leading colon to the name. For example,
‘:.mul’ selects function ‘.mul’.

In some object file formats, symbols have a leading underscore.
gprof will normally not print these underscores. When you
name a symbol in a symspec, you should type it exactly as gprof
prints it in its output. For example, if the compiler produces a
symbol ‘_main’ from your main function, gprof still prints it as
‘main’ in its output, so you should use ‘main’ in symspecs.

‘main.c:main’

Selects function ‘main’ in file ‘main.c’.

‘main.c:134’

Selects line 134 in file ‘main.c’.

Chapter 5: Interpreting gprof’s Output 15

5 Interpreting gprof’s Output

gprof can produce several different output styles, the most important of
which are described below. The simplest output styles (file information, ex-
ecution count, and function and file ordering) are not described here, but are
documented with the respective options that trigger them. See Section 4.1
[Output Options|, page 7.

5.1 The Flat Profile

The flat profile shows the total amount of time your program spent executing
each function. Unless the ‘-z’ option is given, functions with no apparent
time spent in them, and no apparent calls to them, are not mentioned. Note
that if a function was not compiled for profiling, and didn’t run long enough
to show up on the program counter histogram, it will be indistinguishable
from a function that was never called.

This is part of a flat profile for a small program:
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write
16.67 0.06 0.01 mcount
0.00 0.06 0.00 236 0.00 0.00 tzset
0.00 0.06 0.00 192 0.00 0.00 tolower
0.00 0.06 0.00 a7 0.00 0.00 strlen
0.00 0.06 0.00 45 0.00 0.00 strchr
0.00 0.06 0.00 1 0.00 50.00 main
0.00 0.06 0.00 1 0.00 0.00 memcpy
0.00 0.06 0.00 1 0.00 10.11 print
0.00 0.06 0.00 1 0.00 0.00 profil
0.00 0.06 0.00 1 0.00 50.00 report

The functions are sorted first by decreasing run-time spent in them, then
by decreasing number of calls, then alphabetically by name. The functions
‘mcount’ and ‘profil’ are part of the profiling apparatus and appear in
every flat profile; their time gives a measure of the amount of overhead due
to profiling.

Just before the column headers, a statement appears indicating how much
time each sample counted as. This sampling period estimates the margin of
error in each of the time figures. A time figure that is not much larger than
this is not reliable. In this example, each sample counted as 0.01 seconds,
suggesting a 100 Hz sampling rate. The program’s total execution time was
0.06 seconds, as indicated by the ‘cumulative seconds’ field. Since each

16 GNU gprof

sample counted for 0.01 seconds, this means only six samples were taken
during the run. Two of the samples occurred while the program was in
the ‘open’ function, as indicated by the ‘self seconds’ field. Each of the
other four samples occurred one each in ‘offtime’, ‘memccpy’, ‘write’, and
‘mcount’. Since only six samples were taken, none of these values can be
regarded as particularly reliable. In another run, the ‘self seconds’ field
for ‘mcount’ might well be ‘0.00” or ‘0.02’. See Section 6.1 [Statistical
Sampling Error|, page 27, for a complete discussion.

The remaining functions in the listing (those whose ‘self seconds’ field
is ‘0.00’) didn’t appear in the histogram samples at all. However, the call
graph indicated that they were called, so therefore they are listed, sorted
in decreasing order by the ‘calls’ field. Clearly some time was spent exe-
cuting these functions, but the paucity of histogram samples prevents any
determination of how much time each took.

Here is what the fields in each line mean:

% time This is the percentage of the total execution time your program
spent in this function. These should all add up to 100%.

cumulative seconds
This is the cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the
functions above this one in this table.

self seconds
This is the number of seconds accounted for by this function
alone. The flat profile listing is sorted first by this number.

calls This is the total number of times the function was called. If the
function was never called, or the number of times it was called
cannot be determined (probably because the function was not
compiled with profiling enabled), the calls field is blank.

self ms/call
This represents the average number of milliseconds spent in this
function per call, if this function is profiled. Otherwise, this field
is blank for this function.

total ms/call
This represents the average number of milliseconds spent in this
function and its descendants per call, if this function is profiled.
Otherwise, this field is blank for this function. This is the only
field in the flat profile that uses call graph analysis.

name This is the name of the function. The flat profile is sorted by
this field alphabetically after the self seconds and calls fields are
sorted.

Chapter 5: Interpreting gprof’s Output

5.2 The Call Graph

17

The call graph shows how much time was spent in each function and its
children. From this information, you can find functions that, while they
themselves may not have used much time, called other functions that did
use unusual amounts of time.

Here is a sample call from a small program. This call came from the same
gprof run as the flat profile example in the previous section.

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time

[1]

[2]

(3]

name
<spontaneous>
start [1]
main [2]
on_exit [28]
exit [59]
start [1]
main [2]
report [3]

main [2]
report [3]
timelocal [6]
print [9]
fgets [12]
strncmp <cycle 1> [40]
lookup [20]
fopen [21]
chewtime [24]
skipspace [44]

<cycle 2 as a whole> [4]
offtime <cycle 2> [7]

self children called
100.0 0.00 0.05
0.00 0.05 1/1
0.00 0.00 1/2
0.00 0.00 1/1
0.00 0.05 1/1
100.0 0.00 0.05 1
0.00 0.05 1/1
0.00 0.05 1/1
100.0 0.00 0.05 1
0.00 0.03 8/8
0.00 0.01 1/1
0.00 0.01 9/9
0.00 0.00 12/34
0.00 0.00 8/8
0.00 0.00 1/1
0.00 0.00 8/8
0.00 0.00 8/16
59.8 0.01 0.02 8+472
0.01 0.02 244+260
0.00 0.00 236+1

tzset <cycle 2> [26]

The lines full of dashes divide this table into entries, one for each function.
Each entry has one or more lines.

In each entry, the primary line is the one that starts with an index number
in square brackets. The end of this line says which function the entry is for.
The preceding lines in the entry describe the callers of this function and the
following lines describe its subroutines (also called children when we speak

of the call graph).

The entries are sorted by time spent in the function and its subroutines.

The internal profiling function mcount (see Section 5.1 [The Flat Profile],
page 15) is never mentioned in the call graph.

18 GNU gprof

5.2.1 The Primary Line

The primary line in a call graph entry is the line that describes the function
which the entry is about and gives the overall statistics for this function.
For reference, we repeat the primary line from the entry for function
report in our main example, together with the heading line that shows the
names of the fields:
index 7% time self children called name

[3] 100.0 0.00 0.05 1 report [3]
Here is what the fields in the primary line mean:

index Entries are numbered with consecutive integers. FKach function
therefore has an index number, which appears at the beginning
of its primary line.
Each cross-reference to a function, as a caller or subroutine of
another, gives its index number as well as its name. The index
number guides you if you wish to look for the entry for that

function.

% time This is the percentage of the total time that was spent in this
function, including time spent in subroutines called from this
function.

The time spent in this function is counted again for the callers of
this function. Therefore, adding up these percentages is mean-
ingless.

self This is the total amount of time spent in this function. This
should be identical to the number printed in the seconds field
for this function in the flat profile.

children This is the total amount of time spent in the subroutine calls
made by this function. This should be equal to the sum of all the
self and children entries of the children listed directly below
this function.

called This is the number of times the function was called.

If the function called itself recursively, there are two numbers,
separated by a ‘+’. The first number counts non-recursive calls,
and the second counts recursive calls.

In the example above, the function report was called once from
main.

name This is the name of the current function. The index number is
repeated after it.

If the function is part of a cycle of recursion, the cycle number
is printed between the function’s name and the index number
(see Section 5.2.4 [How Mutually Recursive Functions Are De-
scribed], page 20). For example, if function gnurr is part of

Chapter 5: Interpreting gprof’s Output 19

cycle number one, and has index number twelve, its primary
line would be end like this:

gnurr <cycle 1> [12]

5.2.2 Lines for a Function’s Callers

A function’s entry has a line for each function it was called by. These lines’
fields correspond to the fields of the primary line, but their meanings are
different because of the difference in context.

For reference, we repeat two lines from the entry for the function report,
the primary line and one caller-line preceding it, together with the heading
line that shows the names of the fields:

index % time self children called name
0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]

Here are the meanings of the fields in the caller-line for report called
from main:

self An estimate of the amount of time spent in report itself when
it was called from main.

children An estimate of the amount of time spent in subroutines of
report when report was called from main.

The sum of the self and children fields is an estimate of the
amount of time spent within calls to report from main.

called Two numbers: the number of times report was called from
main, followed by the total number of non-recursive calls to
report from all its callers.

name and index number
The name of the caller of report to which this line applies,
followed by the caller’s index number.

Not all functions have entries in the call graph; some options to
gprof request the omission of certain functions. When a caller
has no entry of its own, it still has caller-lines in the entries of
the functions it calls.

If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.

If the identity of the callers of a function cannot be determined, a dummy
caller-line is printed which has ‘<spontaneous>’ as the “caller’s name” and
all other fields blank. This can happen for signal handlers.

5.2.3 Lines for a Function’s Subroutines

A func